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Chapter 5 

Formulation of FEM for Unsteady Problems 
 

Two alternatives for formulating time dependent problems are called coupled space-time 

formulation and semi-discrete formulation. The first one treats the time similar to the space 

dimensions and make use of elements that have time dimensions. In this way the formulation of a 1D 

unsteady problem becomes very similar to that of a 2D steady problem. In coupled space-time 

formulation shape functions are considered to be functions of both space and time, and the 

approximate solution over an element for a 1D problem can be written as 

   ∑          

   

   

                                                                       

where     includes the element nodes in both space and time domains. Although coupled space-

time formulation is very simple, it becomes computationally very expensive, especially for large 3D 

problems. Due to its efficiency, the second alternative, semi-discrete formulation became the 

standard way of studying time dependent problems. 

In semi-discrete formulation time and space derivatives are discretized separately.  Shape functions 

are taken to be functions of space only and discretization of space derivatives provide a set of ODEs 

involving time derivatives of the nodal unknowns. These ODEs are then discretized and solved using 

well-known ODE solution techniques. 

5.1 Semi-Discrete Formulation – Space Discretization 

 

To demonstrate how semi-discrete formulation works we’ll use the following 1D, unsteady AD 

equation 

  

  
  

  

  
  

   

   
               in                                                           

The scalar unknown   is a function of both space ( ) and time ( ). Together with two boundary 

conditions, we also need an initial condition (IC) that provides the solution on the whole domain at 

an initial time. 

Weak form of this DE is obtained in the same way as we did for steady problems. First the weighted 

residual statement is written, followed by integration by parts applied to the diffusion term to yield 

the following elemental weak form 

∫( 
  

  
   

  

  
  

  

  

  

  
)    

 

  

 ∫     
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where B.T. represents the boundary integral term. Approximate solution that we seek over an 

element is in the following form  

        ∑            

   

   

                                                                

where the time dependency of the solution is associated with the nodal unknowns and shape 

functions are taken to be the same the ones used for steady problems, i.e. functions of space only. 

Typically shape functions are functions of the master element coordinate  , instead of the global 

coordinate  , but this detail is not important in our discussion here. 

Substituting this approximate solution into the weak form we get 

∫[ (∑
   

  
  )    (∑  

   

  
)   

  

  
(∑  

   

  
)]    

 

  

 ∫     

 

  

                      

Using GFEM we select a weight function of         to get the following     equation of the 

elemental system 

∫[  (∑
   

  
  )      (∑  

   

  
)   

   

  
(∑  

   

  
)]    

 

  

 ∫        

 

  

                     

Taking the summation sign outside the integral 

∑  

[
 
 
 
 

∫       

 

  ⏟      
  ]

 
 
 
 
   

  

   

   

     ∑  

[
 
 
 
 

∫(      
   

  
   

   

  
 
   

  
)    

 

  ⏟                    
  ]

 
 
 
 

  

   

   

    ∫        

 

  ⏟      
  

        ⏟
  

            

The only difference between this equation and the one obtained for the previously studied steady AD 

equation is the first term that involves the time derivatives of the nodal unknowns. This final 

equation can be written in the following compact form 

[  ]{  ̇}  [  ]{  }  {  }                                                              

where {  } is the vector of elemental nodal unknowns and { ̇ } denotes the time derivatives of the 

nodal unknowns. [  ] , [  ] and {  } are the elemental mass matrix, elemental stiffness matrix and 

elemental force vector. For simplicity elemental boundary integral vector {  } is included in {  }. 

When the elemental systems are assembled we obtain the following global system 

[ ]{ ̇}  [ ]{ }  { }                                                                   

To summarize, for a time dependent problem an extra mass matrix needs to be evaluated. 

Calculation of other matrices and vectors are the same as steady problems. 
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5.2 Semi-Discrete Formulation – Time Discretization 

 

Equation (5.9) includes nodal unknowns and their time derivatives. Therefore it is not a set of 

algebraic equations, but instead a set of ODEs. We still need to discretize the time derivatives of the 

nodal unknowns.  o do this we’ll introduce the following discrete time domain where subscript “s” 

denotes time levels. 

 

 

 

Figure 5.1 Discretization of the time domain 

 

Solution at time level     is given as the initial condition and we’ll obtain the solution at other time 

levels one by one. During any stage of the solution,    denotes the current time level where the 

solution is known and      is the next time level where the solution will be determined.      is the 

time step between time levels   and    .  For simplicity we will consider     to be constant for the 

whole solution, although it may be more efficient computationally to vary it in time. 

5.2.1. Forward Difference (Euler) Scheme  

An advantage of semi-discrete formulation is that any of the well known finite difference based time 

integration schemes can be used to discretize  { ̇}. One of the simplest approximation one can use to 

discretize  { ̇}  is the following forward difference (Euler) scheme 

{ ̇}  
{ }    { } 

  
                                                               

where { }  are the known nodal values of time level   and { }    is the unknown vector of the new 

time level that needs to be calculated.       denotes the truncation error, i.e. the accuracy of 

the scheme, which is first order in this case. In other words truncation error of time 

discretization decreases linearly with the time step. Substituting this approximation into 

equation (5.9) written for time step  , we get 

[ ] 
{ }    { } 

  
 [ ] { }  { }                                                    

For the AD equation that we are studying and for fluid flow problems that we’ll study later, mass 

matrix is independent of time so we can drop the subscript   from it. But in general stiffness matrix, 

force vector and boundary condition vector can be functions of time, so let’s keep their subscripts. 

Equation (5.11) can be rearranged as follows to solve for the unknowns at time level     

{ }      [ ]   [[ ] { }       { }  [ ] { }    ]                                   

Δ𝑡 

              𝑡𝑠−          𝑡𝑠−              𝑡𝑠             𝑡𝑠              𝑡𝑠                

𝑡 



ME 582 Finite Element Analysis in Thermofluids 
Dr. Cüneyt Sert 

 

5-4 
 

Starting from the known { }  values, we can use this equation in a time loop to calculate the nodal 

unknowns at different time levels. 

5.2.2. Backward Difference Scheme  

Another common way of discretizing the time derivative is to use backward difference scheme given 

below  

{ ̇}    
{ }    { } 

  
                                                               

Substituting this approximation into equation (5.9) written for time step    , we get (again we’ll 

assume that the mass matrix is independent of time) 

[ ]
{ }    { } 

  
 [ ]   { }    { }                                                 

The unknown vector { }    can be solved as follows 

{ }       [ ]    [ ]    
   [[ ] { }     { }    ]                                  

5.2.3. Crank-Nicolson Scheme  

A third commonly used time discretization is known as the Crank-Nicolson scheme, which is based on 

the following formulation 

 

 
{ ̇}

 
 

 

 
{ ̇}

   
 

{ }    { } 
  

                                                      

Which is second order accurate. Crank-Nicolson is kind of an averaging of forward and backward 

differencing schemes. To use it, let’s write equation (5.9) for both time level   and     as follows 

[ ]{ ̇}
 
 [ ] { }  { }                                                              

[ ]{ ̇}
   

 [ ]   { }    { }                                                         

Multiply these equations by 1/2 , add them up and use equation (5.16) to discretize time derivative 

terms. Resulting equation can be rearranged to obtain the unknown vector at the new time level as 

follows 

{ }    ([ ] 
  

 
[ ]   )

− 

[([ ]  
  

 
[ ] ) { }  

  

 
 { }  { }    ]               

5.2.4.  - Family Schemes  

Forward differencing, backward differencing and Crank-Nicolson schemes described above can be 

generalized as  -family schemes using the following discretization.  

     { ̇}   { ̇}    
{ }    { } 

  
         for                                          
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Similar to what we did for the Crank-Nicolson scheme, we can use Equation (5.20) in equations (5.17) 

and (5.18) to obtain the following equation that can be used to solve for new unknowns 

{ }    [ ̂]
− 

 [ ̅]{ }  { ̂}                                                          

where 

[ ̂]  [ ]     [ ]   

 
[ ̅]  [ ]         [ ] 

 
{ ̂}     [  { }         { } ]

                                                  

Forward differencing, backward differencing and Crank-Nicolson schemes correspond to the 

following selections of the   parameter 

  

{
 
 

 
 

 
 

   
 
 

      

 orward Differencing ( uler 
 

 rank  icolson                        
 

 ackward Differencing          

                                                                 

 

5.2.5. Comparison of Implicit and Explicit Time Discretization Schemes and Stability 

As seen in equation (5.21), in   family schemes [ ̂]  needs to be inverted. For the forward 

differencing scheme [ ̂] is equal to the mass matrix, which is generally time independent. Therefore 

it needs to be inverted only once, but not at every time level of the numerical solution. However, for 

backward differencing and Crank-Nicolson schemes [ ̂] also includes [ ]   , which is likely to be 

time dependent. Therefore it may be necessary to calculate a new [ ̂] and invert it at each time step, 

which is a costly process. 

Forward differencing scheme is known as an explicit scheme. Backward differencing and Crank-

Nicolson are implicit schemes. In general implicit schemes are computationally more demanding as 

mentioned above. However, they are also known to be more stable compared to explicit schemes. 

Stability of a time discretization scheme is about the behavior of errors during the time marching 

process. If the errors remain bounded, i.e. do not continuously grow in time, the scheme is said to be 

stable. However, if the scheme allows unlimited growth of errors in time the solution may start to 

oscillate unphysically and may blow up eventually. 

Explicit schemes such as forward differencing are known to be conditionally stable, i.e. time step    

should be selected smaller than a certain critical value to have stable solutions. In practice this 

restriction can be too severe, ruining the computational efficiency of the explicit schemes. Implicit 

schemes such as backward differencing and Crank-Nicolson are unconditionally stable. They do not 

have critical time step restrictions and can work with larger time steps. However, note that time 

steps should still be seected small enough to capture the unsteady behavior of the solution 

accurately. Due to this advantage of being able to work with larger time steps, implicit schemes may 

be preferred over explicit ones, even if they require more computational work at each time step. 
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5.2.6. Mass Matrix Lumping 

As explained above, unsteady problems are solved step-by-step in a time loop. At each time level a 

linear algebraic system needs to be solved. Altough explicit schemes could do this in a more efficient 

manner compared to implicit ones, still the solution of a linear algebraic system at each time level is 

a costly process. To avoid this lumping can be applied to the mass matrix, convertng it into a diagonal 

matrix. When the mass matrix becomes diagonal, we no longer need to solve a linear equation 

system at each time level, insteady the unknowns at the new time level can now be calculated 

independent of each other. Also with mass lumping critical time step values of conditionally stable 

schemes become larger. Mass lumping increases computational efficiency considerably, but it also 

introduces additional numerical errors to the solution and it should be used with care. 

Row-sum lumping is the easiest way of obtaining lumped mass matrices. Entries of each row of the 

mass matrix is summed and the sum is assigned to the diagonal entry of that row. Proportional 

lumping is another alternative way of lumping the mass matrices [1]. 

5.2.7. Other Time Discretization Schemes 

 -family schemes that are studied in this chapter are not the only possible ways of time 

discretization. Actually first order forward differencing (Euler scheme) belongs to the family of 

explicit Adam’s  ashforth schemes. Backward differencing and Crank-Nicolson schemes belong to the 

family of implicit Adam’s Moulton schemes  It is possible to study Adam’s family schemes to see how 

higher order explicit and implicit time discretizations can be constructed [2]. Runge-Kutta is another 

well-known family of schemes used for time discretization [2]. 

5.3 Sample 1D Unsteady Solution 

 

Consider the unsteady heat diffusion in a 1D domain governed by the following DE 

  

  
 

   

   
              

Initial condition                   

 oundary conditions                                

The problem can be treated to model the cooling of a 1D bar that is initially heated to have a 

parabolic temperature distribution with the maximum temperature being at its center. Its ends are 

kept at a fixed low temperature and the bar loses it to the surrounding through its ends and 

temperature over it reduces in time until it comes to an equilibrium. 

Let’s solve this problem using the following mesh of 5 linear elements, each having a length of 

       

 

 

e=1 

x 

e=2 e=3 e=4 e=5 

1              2               3              4             5             6 
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Elemental mass matrix derived in the previous section is  

   
   ∫       

 

  

    ∫       
     

  

− 

 

which will be the same for each element, since all of them are linear elements of the same size. Using 

the shape functions of 1D linear elements, entries of [  ] can be evaluated as 

   
  ∫

 

 
      

 

 
      

   

 
   

  

− 

 
 

  
 

   
  ∫

 

 
      

 

 
      

   

 
   

  

− 

 
 

  
 

   
     

    (due to symmetry of [  ] ) 

   
  ∫

 

 
      

 

 
      

   

 
   

  

− 

 
 

  
 

Therefore elemental mass matrices are 

[  ]  
 

  
[
  
  

] 

Assembled global mass matrix is 

[ ]  
 

  

[
 
 
 
 
 
      
      
      
      
      
      ]

 
 
 
 
 

 

Elemental stiffness matrix for the DE of interest is 

   
  ∫  

   

  
 
 

  
   
   

  
 
 

  
       

  

− 

 

Considering   to be constant, elemental stiffness matrices will also be the same for all elements. 

Their entries are 

   
  ∫ ( 

 

 
) 

 

   
 ( 

 

 
)  

 

   
        

  

− 

     

   
  ∫ ( 

 

 
) 

 

   
 (
 

 
)  

 

   
        

  

− 
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    (du e to symmetry of [  ] ) 

   
  ∫ (

 

 
) 

 

   
 (
 

 
)  

 

   
        

  

− 

     

Therefore elemental stiffness matrices are 

[  ]  [
       
       

] 

and the assembled global stiffness matrix is 

[ ]  

[
 
 
 
 
 
           
            

            
            
            
              ]

 
 
 
 
 

 

Let's obtain the solution using forward differencing scheme with a time step of       . At level 

    nodal unknown vector { }  can be obtained from the given initial condition as follows 

{ }  

{
 
 

 
 

 
    
    
    
    
 }

 
 

 
 

 

To march in time, we need to use the following forward differencing formula derived in the previous 

section 

[ ] { }      [ ]{ }       { }  [ ] { }    

For this problem force function on the right hand side of the DE is zero. Also both BCs are of essential 

type and therefore    and    entries of the elemental boundary integral vector (which is included in 

{ } ) cannot be calculated but they are also not necessary. 

To get the solution at the new time level we first need to reduce the above general system to the 

following 4x4 system by the use of given EBCs 

 

  
[

    
    
    
    

]{

  

  

  
  

}

 

 
 

  
[

    
    
    
    

] {

    
    
    
    

}     [

          
          

          
           

]{

    
    
    
    

} 

Solution at the new time level becomes 

{

  

  

  
  

}

 

 {

      
      
      
      

} 
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We can continue like this and calculate one more solution as 

[ ] { }  [ ] { }      [ ]{ }  

to get 

{

  

  

  
  

}

 

 {

      
      
      
      

} 

Note that forward differencing is a conditionally stable explicit scheme. If we continue a few more 

time steps we will get unphysical oscillations indicating that we need to lower the time step    to 

obtain a stable solution. 

5.4 Exercises 

 

E-5.1. Continue the solution of Section 5.3 and see how the solution blows up. Solve the problem 

again with the same time step using backward differencing. Does the solution converge to a steady-

state?  

E-5.2. Modify steady1D.m code so that it can solve time dependent problems with   family schemes. 

Solve the problem of Section 5.3 with different time steps and determine the critical time step value. 

E-5.3. Use the unsteady version of steady1D.m code to solve the problem of Section 5.3 with 50 

elements. Is the critical time step value that you calculated in the previous exercise still valid or does 

the critical time step value depends on the mesh (element length)? 

E-5.4. Consider a steel pipeline that is 1 m in diameter and has a wall thickness of 40 mm. The pipe is 

heavily insulated on the outside, and before the initiation of flow, the walls of the pipe are at a 

uniform temperature of      . With the initiation of flow, hot oil at      is pumped through the 

pipe, creating a convective condition corresponding to            at the inner surface of the 

pipe. Determine the temperature of the exterior pipe surface covered by the insulation after 8 

minutes? Consider the pipe wall to be a plane wall, since its thickness is much less than its diameter. 

Use multiple meshes and time steps to make sure that your solution is mesh and time step 

independent. Properties of steel are              ,               ,               . 

This problem is taken from reference [3]. 

E-5.5. A new process for treatment of a special material is to be evaluated. The material is a sphere 

of radius        , is initially in equilibrium at       in a furnace. It is suddenly removed from the 

furnace and subjected to a two-step cooling process. 

Step 1: Cooling in air at      for a period of time    until the center temperature reaches a critical 

value,               . For this situation, the convective heat transfer coefficient is                   

             . After the sphere has reached this critical temperature, the second step is 

initiated.  
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Step 2: Cooling in a well stirred water bath at     , with a convective heat transfer coefficient of 

               . 

a) Calculate the time    required for step 1 of the cooling process to be completed. 

b) Calculate the time    required during step 2 of the process for the center of the sphere to 

cool from       to     . 

Properties of the sphere material are              ,              ,                . 

This problem is taken from reference [3]. 

E-5.6. In laying water mains, utilities must be concerned with the possibility of freezing during cold 

periods. Although the problem of determining the temperature of in soil as a function of time is 

complicated by changing surface conditions, reasonable estimates can be based on the assumption 

of constant surface temperature over a prolonged period of cold weather. What minimum burial 

depth    would you recommend to avoid freezing under conditions for which soil, initially at a 

uniform temperature of     , is subjected to a constant surface temperature of       for    days? 

Properties of soil are              ,                ,                . 

This problem is taken from reference [3]. 
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